with the value calculated from the thermal expansion data of Müller and Rohrer, 10 rather than the value determined from the data of White. 8 The calculated value of $\left(\partial T_{c}/\partial P\right)_{H=0}$ for niobium is about the limit of our experimental sensitivity and is, therefore, not inconsistent with the zero pressure dependence observed. The experimental results of Hinrich and Swenson 9 are also in good agreement with the calculated value.

The effect of applying pressure to a superconductor, until recently, had always been associated with an observed decrease in the superconducting transition temperature. However, a number of superconductors (Zr, 12 La, 13 U and V have now been found to exhibit a positive $\partial T_{\rm c}/\partial P$. We may attempt to understand this difference in sign of the pressure dependence of the superconducting transition temperature by considering the volume derivative of the BCS relationship,

$$T_{c} = 0.85 \Theta_{c} \exp(-1/A) \tag{5}$$

with A = N(0)V, where N(0) is the density of electron states at the Fermi surface and V is the attractive electron-electron interaction parameter. Differentiation of (5) with respect to volume gives,

$$\frac{\partial \ln T_{c}}{\partial \ln v} = \varphi \ln \left(\frac{0.85 \Theta_{D}}{T_{c}} \right) - \gamma_{G}$$
 (6)

where ϕ = $\partial \ln$ A/ $\partial \ln$ v and γ_G , the Grüneisen constant, represents the volume dependence of the phonon spectrum. Rewriting $\partial \ln$ $T_c/\partial \ln$ v in terms of $\partial T_c/\partial P$ we have,

$$\frac{\partial T_{c}}{\partial P} = -iKiT_{c} \left\{ \varphi ln \left(\frac{0.85 \Theta_{D}}{T_{c}} \right) - \gamma_{G} \right\}$$
 (7)

where K is the compressibility.